
Efficient and Privacy-Preserving Outsourced
Calculation of Rational Numbers

Ximeng Liu ,Member, IEEE, Kim-Kwang Raymond Choo, Senior Member, IEEE,

Robert H. Deng, Fellow, IEEE, Rongxing Lu, Senior Member, IEEE, and Jian Weng

Abstract—In this paper, we propose a framework for efficient and privacy-preserving outsourced calculation of rational numbers,

which we refer to as POCR. Using POCR, a user can securely outsource the storing and processing of rational numbers to a cloud

server without compromising the security of the (original) data and the computed results. We present the system architecture of POCR

and the associated toolkits required in the privacy preserving calculation of integers and rational numbers to ensure that commonly

used outsourced operations can be handled on-the-fly. We then prove that the proposed POCR achieves the goal of secure integer and

rational number calculation without resulting in privacy leakage to unauthorized parties, and demonstrate the utility and the efficiency of

POCR using simulations.

Index Terms—Privacy-preserving, homomorphic encryption, outsourced computation, rational numbers, encrypted data processing

Ç

1 INTRODUCTION

THE increase in the number and range of digital and
Internet-connected devices (e.g., Internet of Things

(IoT) and medical devices) as well as the growing size of
storage media have resulted in a significant increase in the
amount of data captured, stored and disseminated in elec-
tronic only form [1], [2]—this is also known as ‘big data’. A
survey by IDC and EMC [3], for example, predicted that the
size of digital data created, replicated and consumed will be
40,000 exabytes by 2020. A widely accepted definition of big
data is from Gartner, which defines it as “high-volume,
-velocity and -variety information assets that demand cost-
effective, innovative forms of information processing for
enhanced insight and decision making” [4].

Cloud computing has been identified as a potential solu-
tion to process and store big data, and is increasingly used
in domains such as Internet of Things [5], e-commerce [6],
and scientific research [7], [8], [9]. For example, in 2011, the
U.S Federal Government adopted a ‘Cloud First’ policy
which requires government agency’s Chief Information
Officers to implement a cloud-based service whenever
there was a secure, reliable, and cost-effective option [10],
[11]. A review of seven government agencies by the U.S.
Government Accountability Office in 2014 found that since

2012, “the total number of cloud computing services imple-
mented by the agencies increased by 80 services, from 21 to
101” and these “agencies collectively reported cost savings
of about $96 million from the implementation of 22 of the
101 cloud services” [12]. It is, therefore, unsurprising that
research labs, such as [13], [14], dedicated to cloud comput-
ing research have also been set up.

One application of cloud is IoT (or Cloud of Things)where
computationally limited devices, such as body sensors (used
to monitor patient’s heart rate, blood pressure and glucose
levels, etc), can send data to the cloud for processing. There
are known security and privacy concerns relating to the use
of cloud computing. In the body sensor example, it is impor-
tant to ensure the security and privacy of patient’s health
and other personally identifiable information (PII), such as
health status. The accuracy of the collected data is also cru-
cial in applications, such as healthcare. In healthcare, most
data (e.g., blood glucose, insulin, and C-peptide levels) are
non-integer (see the recent study involving 36,745 subjects
aged 4,069 in the Japan Public Health Center-based prospec-
tive study [15]). However, traditional cryptosystems are gen-
erally designed to protect only integer values. Therefore, this
will affect the accuracy of the data and consequently, deci-
sion making and in the worse case scenario, resulting in the
wrong diagnosis of a patient.

In this paper, we seek to address the above-mentioned
challenge by presenting a framework for efficient and
Privacy-preserving Outsourced Calculation for Rational
numbers (POCR). We regard the main contributions of this
paper to be three-fold, namely:

� Our proposed POCR is designed to allow users to
outsource their personal data (include both integer
and rational numbers) to cloud server for secure
storing and processing.

� We build a privacy-preserving outsourced calculation
toolkit for integer numbers. The toolkit consists of

� X. Liu, and R. H. Deng are with the School of Information Systems,
Singapore Management University, Singapore.
E-mail: snbnix@gmail.com, robertdeng@smu.edu.sg.

� K. K.-R. Choo is with the School of Information Technology and
Mathematical Sciences, University of South Australia, Australia and
the INTERPOL Global Complex for Innovation, Singapore.
E-mail: Raymond.Choo@fulbrightmail.org.

� R. Lu is with the School of Electrical and Electronics Engineering,
Nanyang Technological University, Singapore. E-mail: rxlu@ntu.edu.sg.

� J. Weng is with the School of Information Technology, Jinan University,
China. E-mail: cryptjweng@gmail.com.

Manuscript received 8 Nov. 2015; revised 25 Jan. 2016; accepted 10 Feb. 2016.
Date of publication 1 Mar. 2016; date of current version 12 Jan. 2018.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2016.2536601

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018 27

1545-5971� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:17:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0003-4067-8230
mailto:
mailto:
mailto:
mailto:
mailto:

most commonly used elementary operations, such as
multiplication, division, comparison, sorting, equiva-
lence testing and greatest common divisor (GCD).

� We build a privacy-preserving outsourced calcula-
tion toolkit for rational numbers, and a secure reduc-
ing fraction protocol (SRF) designed to assist the
server in reducing the greatest common divisor from
both numerator and denominator in a privacy-
preserving way.

The remainder of this paper is organized as follows: In
Section 2, we describe the preliminaries required in the
understanding of our proposed POCR. In Section 3, we for-
malize the system model, as well as outlining the problem
statement and the attacker model. Then, we present the
PCTD and both privacy-preserving outsourced calculation
toolkits for integer and rational numbers in Sections 4 and
5, respectively. The security analysis and performance eval-
uation are respectively presented in Sections 6 and 7.
Related work is discussed in Section 8. Section 9 concludes
this paper.

2 PRELIMINARY

In this section, we outline the definitions of the Additive
Homomorphic Cryptosystem (AHC) and the Secure Bit-
Decomposition Protocol, which serve as the building blocks
of the proposed POCR. Table 1 lists the key notations used
throughout this paper. For ease of reading, if all ciphertexts
belong to a specific RU, say a, we will simply use ½x� instead
of ½x�pka .

2.1 Additive Homomorphic Cryptosystem

Suppose that ½m1� and ½m2� are two additive homomorphic
ciphertexts under the same public key pk in an additive
homomorphic cryptosystem. The additive homomorphic
cryptosystem (e.g., Paillier cryptosystem [16] and Benaloh
cryptosystem [17]) has the additive homomorphism
property:

Dskð½m1� � ½m2�Þ ¼ m1 þm2: (1)

2.2 Secure Bit-Decomposition Protocol (SBD)

Suppose that there are two parties in the protocol, Alice and
Bob. Bob holds the AHC encrypted value ½x�, where
0 � x < 2m and m is the domain size of x in bits. We also
remark that x is not known to both Alice and Bob. Let
ðx0; . . . ; xm�1Þ denote the binary representation of x, where
x0 and xm�1 are the least and most significant bits, respec-
tively. The goal of SBD is to convert the encryption of x into
the encryption of the individual bits of x, without disclosing
any information regarding x to both parties. More formally,
we define the SBD protocol as follows:

½x0�; . . . ; ½xm�1�
� � SBDð½x�Þ:

We refer the interested reader to [18] for the detailed con-
struction of the SBD protocol.

3 SYSTEM MODEL & PRIVACY REQUIREMENT

In this section, we formalize the POCR system model, out-
line the problem statement, and define the attack model.

3.1 System Model

In our system, we mainly focus on how a cloud server
responds to user requests in a privacy-preserving manner.
The system comprises a Key Generation Center (KGC), a
Cloud Platform (CP), Computation Service Providers
(CSPs), and Request Users (RUs) - see Fig. 1.

3.1.1 Key Generation Center

The trusted KGC is tasked with the distribution and man-
agement of private keys in the system.

3.1.2 Request Users

Generally, a RU will use its public key to encrypt some data,
before storing the encrypted data with a CP. The RU can
also request a CP to perform some calculations over the out-
sourced data.

3.1.3 Cloud Platform

A CP has ‘unlimited’ data storage space, and stores and
manages data outsourced from all registered RUs. A CP

TABLE 1
Notations Used

Notations Definition

pka/ ska Public-private key pair of RU a

skðiÞa Partially private keys

½x�pka Encrypted data x under pka

Dskað�Þ Decryption algorithm using ska
PDskðiÞ ð�Þ Partially decryption algorithm (PDec) using skðiÞ

jxj Bit length of x
gcdðx; yÞ Greatest common divisor between x and y
a � b Multiplication between a and b over cyclic group
RSM Revised secure multiplication protocol
SLT Secure less than protocol
SMMS Secure maximum and minimum sorting protocol
SEQ Secure equivalent testing protocol
SDIV Secure division protocol
SGCD Secure greatest common divisor protocol
SRF Secure reducing fraction protocol

Fig. 1. System model under consideration.

28 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:17:18 UTC from IEEE Xplore. Restrictions apply.

also stores all intermediate and final results in encrypted
form. Furthermore, a CP is able to perform certain calcula-
tions over encrypted data.

3.1.4 Computation Service Providers

The CSPs provide online computation services to RUs. In
addition, CSPs are able to partially decrypt ciphertexts sent
by the CP, perform certain calculations over the partially
decrypted data, and then re-encrypt the calculated results.

3.2 Problem Statement

Consider a database T which contains b records
ð1 < i < bÞ, where xi is a rational number belonging to a
RU (e.g., insulin level). Data should be encrypted prior to
outsourcing to a CP for storage. The RU can launch a query
to the CP to obtain some statistic information about T at
will. For example, the RU can query for the mean,

�x ¼Pb
i¼1 xi=b, and the variance, dj ¼

Pb
i¼1ðxi � �xÞ2=b. As

xi is a rational number and needs to be encrypted during
the calculation, we have the following challenges:

1) Secure rational number storage: Traditional encryption
method can only encrypt the number over a finite field (pos-
itive integer number & zero (in an additive group)). There-
fore, we need to be able to store rational numbers without
compromising the privacy of the data owner (i.e., RU).

2) Secure integer operations: The encrypted integer calcula-
tion toolkit should be built first to support commonly used
operations. For example, integer number operations, such
as additions, multiplications and divisions over plaintext,
should be achievable by operating on these two encrypted
numbers.

3) Secure rational number processing: In order to support
outsourced rational number processing, the toolkit for
secure rational number calculations (e.g., comparison of
encrypted rational numbers) needs to be constructed. More-
over, as the plaintext size increases with the executing time
of the homomorphic operations, this may lead to an error in
the results (see Section 5.1 for the detailed analysis). There-
fore, some mechanisms should be designed to guarantee
the correctness of the results after homomorphic operations.

3.3 Attack Model

In our attack model, the KGC (a trusted entity) generates the
public keys and private keys for the system. On the other
hand, RUs, CP andCSPs are curious-but-honestparties,which
strictly follow the protocol. However, they are interested to
learn data belonging to other parties. Therefore, we introduce
an active adversary A� in our model. The goal of A� is to
decrypt the challenge RU’s ciphertext with the following
capabilities:

1) A� may eavesdrop all communication links to obtain
the encrypted data.

2) A� may compromise the CP in order to guess the
plaintext value of all ciphertexts outsourced from the chal-
lenge RU, and all ciphertexts sent from the CSP by execut-
ing an interactive protocol.

3) A� may compromise several CSPs to guess the plain-
text value of all ciphertexts sent from the CP by executing
an interactive protocol.

4) A� may compromise RUs,with the exception of the chal-
lenge RU, to get access to their decryption capabilities, and try
to guess all ciphertexts belonging to the challenge RU.

However, A� is restricted from compromising (1) both the
CSPs and the CP concurrently, and (2) the challenge RU. We
remark that such restrictions are typical in adversary models
used in cryptographic protocols (see the review of adversary
models in [19]).

4 CRYPTO PRIMITIVE AND PRIVACY PRESERVING

INTEGER CALCULATION TOOLKITS

4.1 Paillier Cryptosystem with Threshold
Decryption (PCTD)

In order to realize POCR, the Paillier-based cryptosystem [20]
appears to be a suitable solution for our system at first glance.
However, the RU is not able to directly send the private key to
the servers, and the server can use the private key to obtain
the corresponding user’s data squarely. Therefore, we adapt
the Paillier-based cryptosystem and separate a private key
into different shares to support ðk; nÞ threshold decryption
[21], [22]. This system is, thereafter, referred to as the Paillier
Cryptosystem with Threshold Decryption, which consists of
the following algorithms:

KeyGen. Let O be the security parameter and p; q be two
large prime numbers, where jpj ¼ jqj ¼ O. Due to the prop-
erty of the strong primes, we have two strong primes p0; q0,
s.t., p0 ¼ p�1

2 and q0 ¼ q�1
2 . We then compute N ¼ pq and

� ¼ lcmðp� 1; q � 1Þ=2, and choose a generator g of order
ðp� 1Þðq � 1Þ=2. To choose the generator, we first select a

random number a 2 Z�
N2 before computing g ¼ �a2N [23]

(for simplicity, we denote g ¼ 1þN). The public key is then
pk ¼ N , and the corresponding private key is sk ¼ �.

Encryption (Enc). Given a message m 2 ZN , we choose a
random number r 2 ZN . The ciphertext can be generated as

½m� ¼ gm � rN modN2 ¼ ð1þmNÞ � rN modN2:

Decryption (Dec). To decrypt ½m� using the decryption
algorithm Dskð�Þ and the corresponding private key sk ¼ �,
we need to compute

½m�� ¼ r�Nð1þmN�Þ modN2 ¼ ð1þmN�Þ:

Since gcdð�;NÞ ¼ 1,m can be recovered as:

m ¼ Lð½m�� modN2Þ��1 modN:1

Private Key Splitting (KeyS). choose. d, s.t., d � 0mod� and

d � 1modN2 hold at the same time.2 Define a polynomial

qðxÞ ¼ dþPk�1
i¼1 aix

i, where a1; . . . ; ak�1 are k� 1 random
numbers from Z�

�N2 . Let a1; . . . ;an 2 Z�
�N2 be n distinct non-

zero elements known to all the parties. Denote skðiÞ ¼ qðaiÞ
and send to party i.

Partially decryption (PDec). Once ½m� is received, with

partially private key skðiÞ ¼ qðaiÞ, the partially decrypted

ciphertext CT ðiÞ can be calculated as:

1. Define function LðxÞ as LðxÞ ¼ x�1
N .

2. Since gcdð�;N2Þ ¼ 1, according to the Chinese remainder theorem
[24], then d ¼ � � ð��1 modN2Þmod�N2.

LIU ET AL.: EFFICIENT AND PRIVACY-PRESERVING OUTSOURCED CALCULATION OF RATIONAL NUMBERS 29

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:17:18 UTC from IEEE Xplore. Restrictions apply.

CT ðiÞ ¼ ½m�qðaiÞ modN2:

Threshold decryption (TDec). Once d (d 	 k) partially

decrypted ciphertexts CT ðt1Þ; . . . ; CT ðtdÞ are received, the
TDec algorithm can choose an arbitrary k-element subset
S,3, calculates

T 00 ¼
Y
l2S
ðCT ðlÞÞDl;Sð0Þ modN2;

andm ¼ LðT 00Þ, where Dl;SðxÞ ¼
Q

j2S;j 6¼l
x�aj
al�aj.

Ciphertext Refresh (CR). Once ½m� is received, the CR
algorithm can refresh the ciphertext without changing the
original message m, by randomly choosing r0 2 ZN and
calculating

½m�0 ¼ ½m� � r0N ¼ ðr � r0ÞNð1þmNÞ modN2: tu

Note that PCTD satisfies formula (1). Moreover, given
m 2 ZN , we have

½m�N�1 ¼ ð1þ ðN � 1Þm �NÞÞ � rN�1�N modN2

¼ ½�m�:

The KGC generates the private key sk and public key pk for
a RU, and randomly divides sk into n partially private keys

skð1Þ; . . . ; skðtcÞ before sending skð1Þ to the CP, and skðiÞ and
pk to CSPi ði ¼ 2; . . . ; tcÞ. The RU can encrypt data using pk
and outsource the ciphertexts to the CP for storage.

After introducing the underlying algorithms in PCTD, we
will now present the secure sub-protocols as the toolkits for
processing integers, namely: Revised Secure Multiplication
Protocol (RSM), Secure Less Than Protocol (SLT), Secure
Maximum and Minimum Sorting Protocol (SMMS), Secure
Equivalent Testing Protocol (SEQ), Secure Division Protocol
(SDIV) and Secure Greatest Common Divisor Protocol
(SGCD). We assume that a CP and tc � 1 ðtc > 1; k 	 2Þ
online CSPs (denote as CSP 2, CSP 3, . . ., CSP tc, respectively)
will be involved in these sub-protocols. One online CSP
(called CSPg) is chosen from these CSPs in order to handle
extra calculations. Note that the integers x; y involved in the
above sub-protocols can be positive, negative or zero unless
otherwise stated. Therefore, we should restrict x; y to be in
the range of ½�R1; R1�, where jR1j < jN j=4� 1.4 If we need a
larger plaintext range, we can simply use a largerN . A larger
N implies a broader plaintext range, and therefore, a higher
level of security. However, this will affect the efficiency of
the PCTD (See Fig. 2a).

4.2 Revised Secure Multiplication Protocol

As PCTD can only support additive homomorphism, we are
unable to achieve multiplication between the two plaintexts.
In order to allow plaintext multiplication, we revise the
original Secure Multiplication (SM) protocol [25], and pres-
ent the revised protocol, Revised Secure Multiplication

Protocol. When CP is given two encrypted data ½x� and ½y�
as input, RSMwill securely compute ½x � y�:

Step-1(@CP): CP selects two random numbers
rx; ry 2 ZN , calculates X ¼ ½x� � ½rx�, Y ¼ ½y� � ½ry�, X1 ¼
PDskð1Þ ðXÞ, and Y1 ¼ PDskð1Þ ðY Þ, and sends X and Y to all

online CSPs,X1 and Y1 to CSPg .
Step-2(@CSPi)

5: The online CSPi calculates

CT ðiÞx ¼ PDskðiÞ ð½x�Þ and CT ðiÞy ¼ PDskðiÞ ð½y�Þ; and sends

them to CSPg .
Step-3(@CSPg): Once the partially decrypted ciphertext is

received,CSPg uses TDec to decryptX and Y , and obtains x0

and y0, respectively. Then, CSPg calculates h ¼ x0 � y0,
encrypts h using pk (denoted asH ¼ ½h�), and sendsH to CP.
It can be easily verified that h ¼ ðxþ rxÞ ðyþ ryÞ.

Step-4(@CP): Once H is received, CP computes S1 ¼
½rx � ry�N�1, S2 ¼ ½x�N�ry and S3 ¼ ½y�N�rx . Then, CP uses the
following formula:

H � S1 � S2 � S3 ¼ ½h� ry � x� rx � y� rx � ry� ¼ ½x � y�:
Therefore, both CP & CSPs can jointly compute ½x � y�.

4.3 Secure Less than Protocol

Given two encrypted numbers ½x� and ½y�, the SLT protocol
will provide the encrypted data ½u��, which can be used to
determine the relationship between the plaintexts of the
two encrypted data (i.e., x < y or x 	 y). SLT is described
as follows:

Step-1(@CP): (1) CP computes

½x1� ¼ ½x�2 � ½1� ¼ ½2xþ 1�; ½y1� ¼ ½y�2 ¼ ½2y�:

(2) CP flips a coin s and chooses a random number
r 2 ZN . If s ¼ 1, then CP computes

½l� ¼ ð½x1� � ½y1�N�1Þr ¼ ½rðx1 � y1Þ�:
Otherwise, CP computes

½l� ¼ ð½y1� � ½x1�N�1Þr ¼ ½rðy1 � x1Þ�:

(3) Since CP knows skð1Þ, it can compute K ¼ PDskð1Þ ð½l�Þ,
prior to sending ½l� andK to all CSPs andCSPg , respectively.

Step-2(@CSPi): The online CSPi calculates

CT ðiÞ ¼ PDskðiÞ ð½l�Þ
and sends it to CSPg .

Step-3 (@CSPg): CSPwill execute TDec to obtain l. If jlj >
jNj=2, then CSPmarks u0 ¼ 1, and u0 ¼ 0 otherwise. CSP uses
the Enc algorithm to encrypt u0, and sends ½u0� back to CP.

Step-4 (@CP): Once ½u0� is received, CP computes as fol-
lows: if s ¼ 1, CP marks ½u�� ¼ CRð½u0�Þ, otherwise

½u�� ¼ ½1� � ½u0�N�1 ¼ ½1� u0�:

We remark that u� ¼ 0 indicates x 	 y, and u� ¼ 1 indi-
cates x < y.

3. Note that t1; . . . ; td are mutually disjoint numbers and belong to
f1; . . . ; ng. For 8l 2 S, we have l 2 ft1; . . . ; tdg

4. As the plaintext in PCTD ranges from ½0; N � 1� and is modular
N , ½N �R1; N� is used to represent the range ½�R1; 0�.

5. Note i ¼ 2; . . . ; tc, include g, i.e., for all online CSPs. It is same for
the following protocols unless otherwise specified.

30 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:17:18 UTC from IEEE Xplore. Restrictions apply.

4.4 Secure Maximum and Minimum Sorting
Protocol

Given two encrypted numbers ½x� and ½y�, the SMMS protocol
will provide the encrypted sorting results ½A� and ½I�, s.t.,
A 	 I. SMMS is described as follows:

Step-1 (@CP): (1) CP computes

½x1� ¼ ½x�2 � ½1� ¼ ½2xþ 1�; ½y1� ¼ ½y�2 ¼ ½2y�:

(2) CP flips a coin s and chooses a random number
r; r�1; r

�
2 2 ZN . If s ¼ 1, then CP computes

½l1� ¼ ð½x1� � ½y1�N�1Þr ¼ ½rðx1 � y1Þ�;
½l2� ¼ ½y� � ½r�1� � ½x�N�1 ¼ ½y� xþ r�1�;
½l3� ¼ ½x� � ½r�2� � ½y�N�1 ¼ ½x� yþ r�2�:

If s ¼ 0, CP computes

½l1� ¼ ð½y1� � ½x1�N�1Þr ¼ ½rðy1 � x1Þ�;
½l2� ¼ ½x� � ½r�1� � ½y�N�1 ¼ ½x� yþ r�1�;
½l3� ¼ ½y� � ½r�2� � ½x�N�1 ¼ ½y� xþ r�2�:

(3) CP then uses skð1Þ to calculateK1 ¼ PDskð1Þ ð½l1�Þ, sends
theK1, ½l2� and ½l3� to CSPg , and sends ½l1� to all online CSPs.

Step-2(@CSPi): The online CSPi calculates

CT
ðiÞ
1 ¼ PDskðiÞ ð½l1�Þ

and sends it to CSPg .
Step-3 (@CSPg): CSPg will use TDec to obtain l1. If jl1j <

jNj=2, then CSPg marks u0 ¼ 0 and computes D1 ¼ ½0� and
D2 ¼ ½0�. Otherwise, CSPg marks u0 ¼ 1, uses CR to re-
randomize ½l2� and ½l3�, and denotes them as D1 and D2,
respectively. Moreover, CSPg uses pk to encrypt u0, and
sends ½u0�,D1 andD2 back to CP.

Step-4 (@CP): Once ½u0�; D1; D2 is received, CP computes
as follows:

If s ¼ 1, then CP calculates

½A� ¼ ½x� �D1 � ½u0�N�r
�
1 ; ½I� ¼ ½y� �D2 � ½u0�N�r

�
2 ;

otherwise (s ¼ 0), CP computes

½A� ¼ ½y� �D1 � ½u0�N�r
�
1 ; ½I� ¼ ½x� �D2 � ½u0�N�r

�
2 :

Rationale for transformations in SLT and SMMS . In Step-1
(1), both original data x and y need to be transformed into
x1 and y1, in order to avoid revealing an equivalence rela-
tionship with CSPs. For example, if x ¼ y ¼ 5, then
½rðx� yÞ� ¼ ½0� will be sent to CSPs for decryption. The
CSPg can easily determine x ¼ y if the decryption result is
equal to 0. Therefore, to avoid such a situation, we will use
the transformation and obtain x1 ¼ 11, y1 ¼ 10, where
x1 6¼ y1.

4.5 Secure Equivalent Testing Protocol

Given two encrypted data ½x� and ½y�, SEQ will provide the
encrypted result ½f � to determine whether the plaintext of

the two encrypted data are equivalent (i.e., x ¼? y). SEQ is
described as follows:

(1) Both CP and CSP jointly calculate

½u1� SLTð½x�; ½y�Þ; ½u2� SLTð½y�; ½x�Þ;
½f�1 � RSMð½1� � ½u1�N�1; ½u2�Þ;
½f�2 � RSMð½u1�; ½1� � ½u2�N�1Þ:

(2) CP calculates and outputs:

½f � ¼ ½u1
 u2� ¼ ½f�1 � � ½f�2 �:

If f ¼ 0, then x ¼ y; otherwise, x 6¼ y.

4.6 Secure Division Protocol

Given an encrypted numerator ½y� and an encrypted
denominator ½x�,6 SDIV will provide the encrypted quo-
tient ½q� and encrypted remainder ½r�, without compromis-
ing the privacy of data, s.t., y ¼ q � xþ r ðy 	 x 	 0Þ. SDIV
is explained in Algorithm 1, and a brief description is
given below.

Algorithm 1. Secure Division Protocol

Input: Encrypted numerator ½y� and encrypted
denominator ½x�.

Output: Encrypted quotient ½q� and encrypted remainder ½r�.
1 Both CP and CSP jointly calculate ½f � SEQð½x�; ½0�Þ;
2 CP calculates ½1� � ½f �N�1 ¼ ½1� f �;
3 Then, both CP and CSP jointly calculate ½f � x� RSMð½f�; ½x�Þ
and ½y0� ¼ ½f � y� RSMð½f �; ½y�Þ;

4 CP calculates

½x0� ¼ ½f � xþ ð1� fÞ � 1� ¼ ½f � x� � ½1� f �;

5 Both CP and CSP jointly execute SBD, s.t., ½ym�1�; . . . ; ½y0�
� �

 SBDð½y0�Þ and mark ð½qm�1�; . . . ; ½q0�Þ ¼ ð½ym�1�; . . . ; ½y0�Þ.;
6 CP also initializes

ð½am�1�; . . . ; ½a0�Þ ¼ ð½0�; . . . ; ½0�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
m�elements

Þ;

7 for executing m times do
8 denote ½ai� ½ai�1� (for i ¼ m to 1); then denote
½a0� ½qm�1�; finally, denote ½qi� ½qi�1�(for i ¼ m to 1);

9 calculate ½A� ¼ ½a0� � ½a1�2 � � � ½am�1�2
m�1

;
10 calculate ½Q� SLTð½A�; ½x0�Þ;
11 calculate ½q0� ¼ ½1� � ½Q�N�1 ¼ ½1�Q�;
12 execute ½B� RSMð½x0�N�1; ½q0�Þ;
13 calculate ½A� ½A� � ½B� and then execute the SBD protocol

as:

½am�1�; . . . ½a0�
� � SBDð½A�Þ;

14 Finally, calculate

½r� ¼ ½a0� � ½a1�2 � � � ½am�1�2
m�1

; ½q� ¼ ½q0� � ½q1�2 � � � ½qm�1�2
m�1

:

In the event that the value of the denominator is 0, we
will mark x ¼ 1 and y ¼ 0 (lines 1-4) as we cannot simply

6. For efficiency, we can simply restrict the ranges of x and y to be
within ½0;m�, where m� R1. For example, if jNj ¼ 1024, then we can
choose jmj ¼ 35 which satisfies an overwhelming majority of applica-
tion demands. In other words, m is the domain size of the plaintext in
bits.

LIU ET AL.: EFFICIENT AND PRIVACY-PRESERVING OUTSOURCED CALCULATION OF RATIONAL NUMBERS 31

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:17:18 UTC from IEEE Xplore. Restrictions apply.

abort SDIV. Otherwise, CP will know that x ¼ 0 once SDIV

is aborted. We will now use SBD to expand ½y0� into
encrypted bits, denoted as ð½qm�1�; . . . ; ½q0�Þ (line 5). Also, we
use ð½0�; . . . ; ½0�Þ to initialize ð½am�1�; . . . ; ½a0�Þ (line 6). Next,
the following procedure will be executed m-times: move
½am�1�; . . . ½a0�; ½qm�1�; . . . ; ½q0� by one position to the left (i.e.,
mark ½ai� ¼ ½ai�1� for i ¼ m� 1 to 1). Then, mark ½a0� ¼
½qm�1�, and ½qi� ¼ ½qi�1� for i ¼ m� 1 to 1 (line 8). CP will now
calculate ½am�1�; . . . ; ½a0� and convert from binary to integer
½A� before comparing A with x0 using SLT. If A < x0, then
SDIV will mark q0 ¼ 0; otherwise, SDIV will mark q0 ¼ 1
and compute A ¼ A� x0 (lines 9-13).

After calculating m times, the remainder r is the integer
value of ðam�1; . . . ; a0Þ while the quotient q is the integer
value of ðqm�1; . . . ; q0Þ.

4.7 Secure Greatest Common Divisor Protocol

Given two encrypted numbers ½x� and ½y� (x > 0; y > 0),7

the SGCD protocol will provide the encrypted greatest com-
mon divisor ½C�, without compromising the privacy of data.
The SGCD is explained in Algorithm 2, and a brief descrip-
tion is given below.

Algorithm 2. Secure Greatest Common Divisor Protocol

Input: two encrypted numbers ½x� and ½y�.
Output: the encrypted greatest common divisor ½C�.
1 Both CP and CSP jointly execute SMMS, s.t., ð½y0�; ½x0�Þ

SMMSð½x�; ½y�Þ;
2 for i ¼ 1 to m do
3 calculate ð½qi�; ½ri�Þ SDIVð½y0�; ½x0�Þ;
4 denote ½y0� ½x0� and ½x0� ½ri�;
5 denote ½r0� ½q1�;
6 for i ¼ 0 to m do
7 calculate ½ui� SEQð½ri�; ½0�Þ;
8 for i ¼ 1 to m do
9 execute ½f�i�1;i� RSMð½1� � ½ui�1�N�1; ½ui�Þ;
10 execute ½f�i;i�1� RSMð½ui�1�; ½1� � ½ui�N�1Þ ;
11 calculate ½fi�1;i� ¼ ½ui�1
 ui� ¼ ½f�i;i�1� � ½f�i�1;i�;
12

½Ci� RSMð½ri�1�; ½fi�1;i�Þ;

13 calculate and return ½C� ¼Qm
j¼1½Ci�:

Prior to calculating the greatest common divisor, CP
needs to determine which of the two plaintext values (i.e., ½x�
and ½y�) is larger, as the larger value will be chosen as the
numerator and the smaller value as the denominator to run
SDIV (line 1). Next, in order to calculate GCD privately, we
revisit the euclidean algorithm: the GCD of two numbers
does not change if the larger number is substituted with
the difference between the two numbers. Since this substitu-
tion reduces the larger of the two numbers, repeating this
process gives successively smaller pairs of numbers until
one of the two numbers reaches zero. However, we are not
able to directly use the euclidean algorithm as it is, without
leaking information since the adversary will know how
many protocol rounds have been executed (e.g., the

adversary can know the two integers are co-prime since only
two rounds of calculation are made). Therefore, we will run
the euclidean algorithm for fixed m rounds (related to the
domain size of the integer). Unfortunately, the denominator
will be equal to zero if the number of calculation rounds is
fixed. This issue has been resolved by SDIV (as explained in
Section 4.6). After running the fixed calculation rounds, CP
obtains mþ 1 encrypted remainder. The GCD is the last non-
zero remainder. We just need to determine the position of
the first zero value remainder, and use the zero remainder to
find the GCD. The idea is easy to follow: we denote the non-
zero remainder as 1 and the zero remainder as 0 (lines 6-7).
We use the XOR operations to find the position of the last
non-zero remainder (lines 9-11)—seeAlgorithm 2.

5 TOOLKITS FOR PRIVACY PRESERVING

CALCULATION OF RATIONAL NUMBERS

If a RU wants to outsource the rational numbers to the
CP for storage, then the following challenges need to be
solved, namely: 1) encrypt the rational numbers before
outsourcing; 2) allow some calculations over two
encrypted rational numbers; and 3) guarantee the cor-
rectness of the results after fixed rounds of homomor-
phic operations.

As any rational number x can be presented using x"=x#,
the first challenge can be easily solved by encrypting the

numerator x" and denominator x#, and storing ð½x"�; ½x#�Þ.
For example, �0:25 can be represented as �1=4 ¼ x"=x#.
Using the PCTD scheme, we encrypt x" and x# as

½x"� ¼ ½1�N�1 ¼ ½�1� and ½x#� ¼ ½4�. After that, ð½x"�; ½x#�Þ is
outsourced to the CP.

To solve the second challenge, we introduce the
encrypted rational numbers operations. However, we
need to restrict x" to be in the range of ½�R2; R2� while x#

to be ð0; R2� in the following operations, where
jR2j < jN j=8� 1.8

5.1 Encrypted Rational Number Calculation

In order to achieve encrypted rational number calculation,
we provide the construction of the following seven
operations.

Encrypted Rational Number Addition Operation. Given two
encrypted rational numbers ð½x"�; ½x#�Þ and ð½y"�; ½y#�Þ, the

calculated rational addition result is ð½z"�; ½z#�Þ, where

½k1� RSMð½x"�; ½y#�Þ; ½k2� RSMð½x#�; ½y"�Þ;
½z"� ¼ ½k1� � ½k2�; ½z#� RSMð½x#�; ½y#�Þ:

In other words,

ð½z"�; ½z#�Þ ð½x"�; ½x#�Þ(ð½y"�; ½y#�Þ:

Encrypted Rational Number Minus Operation. Given two
encrypted rational numbers ð½x"�; ½x#�Þ and ð½y"�; ½y#�Þ, the

calculated rational minus result is ð½z"�; ½z#�Þ, where

7. Mathematically, we only consider the greatest common divisor
between both positive integers.

8. For efficiency, we can simply restrict the range of the numerator
to be within ½�m;m� and the denominator to be within ð0;m�, where
m� R2.

32 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:17:18 UTC from IEEE Xplore. Restrictions apply.

½k1� RSMð½x"�; ½y#�Þ; ½k2� RSMð½x#�; ½y"�Þ;

½z"� ¼ ½k1� � ½k2�N�1; ½z#� RSMð½x#�; ½y#�Þ:

Encrypted Rational Number Multiplication Operation. Given
two encrypted rational numbers ð½x"�; ½x#�Þ and ð½y"�; ½y#�Þ,
the rational number multiplication result is ð½z"�; ½z#�Þ, where

½z"� RSMð½x"�; ½y"�Þ; ½z#� RSMð½x#�; ½y#�Þ:
In other words,

ð½z"�; ½z#�Þ ð½x"�; ½x#�Þ)ð½y"�; ½y#�Þ:

Encrypted Rational Number Division Operation. Given two
encrypted rational numbers ð½x"�; ½x#�Þ and ð½y"�; ½y#�Þ, the

rational number division result is ð½z"�; ½z#�Þ, where

½z"� RSMð½x"�; ½y#�Þ; ½z#� RSMð½x#�; ½y"�Þ:
In other words,

ð½z"�; ½z#�Þ ð½x"�; ½x#�Þ> ð½y"�; ½y#�Þ:

Encrypted Rational Scalar-Multiplication Operation. Given
an encrypted rational numbers ð½x"�; ½x#�Þ, the calculated

result is ð½z"�; ½z#�Þ, where

ð½z"�; ½z#�Þ ¼ ð½x"�k; ½x#�kÞ ¼ ð½kx"�; ½kx#�Þ:
Specifically, note that

ð½z"�; ½z#� ¼ ð½x"�N�1; ½x#�N�1Þ ¼ ð½�x"�; ½�x#�Þ:

Encrypted Rational Number Comparison Operation. given
two encrypted rational numbers ð½x"�; ½x#�Þ and ð½y"�; ½y#�Þ,
the encrypted comparison result is ½u�, where

½k1� RSMð½x"�; ½y#�Þ; ½k2� RSMð½y"�; ½x#�Þ;
½u� SLTð½k1�; ½k2�Þ:

If u ¼ 0, indicates x 	 y, and u ¼ 1 indicates x < y.
Encrypted Rational Number Equivalent Testing Operation.

Given two encrypted rational numbers ð½x"�; ½x#�Þ and

ð½y"�; ½y#�Þ, the equivalent testing result can be stored and
denoted as an encrypted data ½u�, where

½k1� RSMð½x"�; ½y#�Þ; ½k2� RSMð½y"�; ½x#�Þ;
½u� SEQð½k1�; ½k2�Þ:

If u ¼ 0, then indicates x ¼ y; otherwise, x 6¼ y.
Example 1. Encrypted data, ð½4"�; ½15#�Þ and ð½3"�; ½20#�Þ,

are stored with the CP. If a RU wants to perform the rational
number addition operations, CP & CSPs calculates:

ð½125"�; ½300#�Þ ð½4"�; ½15#�Þ(ð½3"�; ½20#�Þ:

If the RU wants to perform the rational number multipli-
cation operations, then CP & CSPs calculates:

ð½12"�; ½300#�Þ ð½4"�; ½15#�Þ)ð½3"�; ½20#�Þ:

If the RU wants to perform the rational number division
operations, then CP & CSPs calculates:

ð½80"�; ½45#�Þ ð½4"�; ½15#�Þ> ð½3"�; ½20#�Þ:

As the results are not always in the simplest form, the
plaintext length will increase with the number of the
homomorphic operations. Suppose there are two t-bits
length elements x1 and x2 ðt� jNjÞ, the homomorphic
addition will obtain the tþ 1-bit (or t-bit) length number
x1 þ x1. If the homomorphic multiplication is executed,
we will obtain 2t-bit (or 2t� 1-bit) x1x2 outputs. If too
many homomorphic multiplications are involved, the
length of the plaintext will easily be greater than jNj and
cause an error (the plaintext will modular N). For our
rational number operations, the plaintext length of the
numerator and denominator increases with the number
of the homomorphic operations. However, the calculated
numerator and denominator may exist some common
divisors (in Example 1, 25 is the GCD between 125 and
300, while 12 is the GCD between 12 and 300, and 5 is the
GCD between 80 and 45). Without taking any action, the
middle results cannot be used after some fixed opera-
tions. In order to guarantee the correctness of the results,
we should find the GCD between the numerator and
denominator, and securely reduce the GCD from both
numerator and denominator—see Section 5.2.

5.2 Secure Reducing Fraction Protocol

As too many homomorphic operations will result in an
error, the Secure Reducing Fraction Protocol is designed
to reduce the GCD from both numerator and denomina-
tor, in order to guarantee the correctness of the results.
Given ð½x"�; ½x#�Þ, SRF will output ð½x"3�; ½x#3�Þ, s.t.,

x"=x# ¼ x"3=x
#
3, and x"3 and x#3 has no common divisor. At

first glance, it appears we can directly use SGCD to
obtain the GCD, and then use SDIV to divide the GCD
from numerator and denominator to get the simplest
form. However, as we use N �R to represent �R, an

error will occur. For example, let N ¼ 23, x" ¼ �5 and

x# ¼ 15. Using PCTD, x" ¼ �5 is stored as x" ¼ 18. The
direct calculation will result in an erroneous value of 6=5

(stored as ½6"�; ½5#�), when the real value is �1=5 (stored

as ½17"�; ½5#�).
In order to guarantee the correctness, we introduce the

following to handle the negative numbers: if x" is a positive

value (i.e., jx"j < jNj=2), then the value will not change. If

x" is a negative value (i.e., jx"j > jNj=2), then the value will

be replaced with �x". Then, the protocol uses SGCD to

obtain GCD, and then use SDIV to reduce x" and x# to

obtain x"2 and x#3. If the original x" is a positive value, then

the reduced value of x"2 will not be changed. If the original

x" is a negative value, then the final result will be �x"2. The
specific construction of SRF is as follows:

Step-1(@CP): The CP flips a coin s, chooses a random

number r, s.t., jrj < 3jN j=8, and calculates ½l� ¼ ð½x"�2 � ½1�Þr ¼
½rð2x" þ 1Þ� if s ¼ 1, and ½l� ¼ ð½x"�2 � ½1�ÞN�r ¼ ½�rð2x" þ 1Þ�
if s ¼ 0. The CP then calculates K ¼ PDskð1Þ ð½l�Þ, sends K to

the CSPg , and sends ½l� to CSPi.

LIU ET AL.: EFFICIENT AND PRIVACY-PRESERVING OUTSOURCED CALCULATION OF RATIONAL NUMBERS 33

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:17:18 UTC from IEEE Xplore. Restrictions apply.

Step-2(@CSPi): The CSPi calculates

CT ðiÞ ¼ PDskðiÞ ð½l�Þ;

and sends it to CSPg .
Step-3(@CSPg): The CSPg runs TDec to obtain l. If

jlj < jNj=2, mark u ¼ 1; otherwise, u ¼ �1. Then, u is
encrypted (i.e., ½u�) and sent to CP.

Step-4: (1) If s ¼ 1, then CP calculates ½x"1� RSMð½x"�;
½u�Þ; otherwise, ½x"1� RSMð½x"�; ½u�N�1Þ:

(2) Both CP and CSP jointly run

½C� SGCDð½x"1�; ½x#�Þ; ð½Q2�; ½x"2�Þ SDIVð½x"1�; ½C�Þ;

ð½Q3�; ½x#3�Þ SDIVð½x#�; ½C�Þ:

(3) If s ¼ 1, then CP calculates ½x"3� RSMð½x"2�; ½u�Þ; other-
wise ½x#3� RSMð½x#2�; ½u�N�1Þ.

The protocol finally outputs ð½x"3�; ½x#3�Þ.
Example 2. Here, we give an example to demonstrate the

correctness of SRF. Suppose N ¼ 23, x" ¼ �5 and x# ¼ 15.

Thus, CP stores the value as ð½18"�; ½15#�Þ. First, we should

transform ð½5"�; ½15#�Þ using Step-1 to Step-3(1). The SGCD is

then executed to generate the GCD ½5"�. Then, SDIV is used

to obtain ½1"� and ½5#�. Finally, CP will transfer the finial

result as (½22"�; ½5#�).
The Necessity of CSPs. Since PCTD (or other partially

homomorphic cryptosystem) is used, we will need to use
CSPs as auxiliary servers to perform plaintext multiplica-
tion, as CP is not able to perform both addition and multi-
plication homomorphic calculations over encrypted data at
the same time (unlike, a fully homomorphic cryptosystem).
Unfortunately, existing fully homomorphic cryptosystem is
rather inefficient, in term of computation and storage [26],
[27]. In the near future, if an efficient fully homomorphic
cryptosystem exists, we can remove CSPs from the system
which will also result in a more elegant system.

The Extension to Handle Real Number. In our system, we
use the nearest rational number to simulate the real number,
at the cost of some accuracy. For example, if we want to
store

ffiffiffi
2
p

, we can just use 1:414 (707500) to represent. If we want

a higher level of accuracy, we can use 1:41421 (141421100000) to rep-

resent
ffiffiffi
2
p

. In other words, a higher level of accuracy will
require a longer plaintext length.

6 SECURITY ANALYSIS

In this section, we analyze the security of the basic encryp-
tion primitive and the sub-protocols, before demonstrating
the security of our POCR framework.

6.1 Analysis of PCTD

6.1.1 The Correctness of Threshold Decryption

The correctness of TDec can be verified as follows:

T 00 ¼
Y
l2S
ðCT ðlÞÞDl;Sð0Þ modN2 ¼ ½m�

P
l2S qðaiÞDl;Sð0Þ

¼ ðð1þmNÞrNÞd modN2 ¼ 1þmN:

Then, we can calculate LðT 00Þ ¼ T 00�1
N ¼ m.

6.1.2 Security of PCTD

The security of PCTD is given by the following theorem.

Theorem 1. The PCTD scheme described in Section 4.1 is seman-
tically secure, based on the assumed intractability of the
Partially Discrete Logarithm (PDL) problem.

Proof. The security of PCTD can be divided into two parts: 1)
the privacy of ciphertext; 2) the privacy of divided pri-
vate key.

The privacy of PCTD ciphertext follows directly from
that of the Paillier cryptosystem, which has been proven
to be semantically secure in the standard model assum-
ing the intractability of the PDL problem [20] (the hard-
ness of PDL problem can be found in [20]).

The privacy of divided private key is guaranteed by
Shamir secret sharing scheme [28], [29] which is-
information-theoretic secure. The RU’s private key sk is
split into n shares in a way that any less than k shares
cannot recover the original sk. It further implies that the
adversary cannot cover the original plaintext with less
than k shares of partially decrypted ciphertexts. tu

6.2 The Security of Sub-Protocols

Here we recall the security model for securely realizing an
ideal functionality in the presence of non-colluding semi-
honest adversaries. For simplicity, the challenge RU (a.k.a.
“DR”), and both CP (a.k.a. “SP”), CSPi (a.k.a.“Si”, i 6¼ g),
and CSPg (a.k.a. “Sg”), are involved in specific scenario of
our functionality. We refer the reader to [30], [31] for the
general case definitions.

Theorem 2. The RSM protocol described in Section 4.2 can
securely compute multiplication over ciphertext in the presence
of semi-honest (non-colluding) adversaries A ¼ ðADR

;AP ;
ASi ;ASg Þ.

Proof. We only provide a proof to show how to construct
the independent simulators SimDR

;SimSP ;SimSi ;SimSg .
SimDR

receives x and y as input and then simulates
ADR

as follows: it generates encryption ½x� ¼ EncðxÞ of x
and encryption ½y� ¼ EncðyÞ of y. Finally, it returns ½x�
and ½y� to ADR

and outputs ADR
’s entire view.

The view of ADR
consists of the encrypted data. The

views of ADR
in the real and the ideal executions are

indistinguishable due to the semantic security of PCTD.
SimSP simulatesASP as follows: First, it generates (ficti-

tious) encryption of the inputs ½x̂� and ½ŷ� by running Encð�Þ
on randomly chosen x̂; ŷ, randomly generates ri 2 ZN , cal-

culates X̂ and Ŷ , and then calculates X̂1 and Ŷ1 using

PDecð�Þ.SimSP sends the encryption X̂; Ŷ ; X̂1; Ŷ1 toADP
. If

ADP
replieswith?, thenSimSP returns?.

The view of ASP consists of the encrypted data it cre-
ates. In both the real and the ideal executions, he receives

the output encryptions X̂; Ŷ ; X̂1; Ŷ1. In the real world,
this is guaranteed by the fact that the RU is honest and
the semantic security of PCTD. The views of ASP in the

real and the ideal executions are indistinguishable.
SimSi simulates ASi as follows: it randomly chooses x00

and y00, uses the Encð�Þ to obtain ½x00� and ½y00�, uses PDec

to generate CT
ðiÞ
x00 and CT

ðiÞ
y00 , and then sends these

34 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:17:18 UTC from IEEE Xplore. Restrictions apply.

partially decrypted ciphertext to ASi . If ASi replies with

?, then SimSi returns ?.
The view of ASi consists of the encrypted data it cre-

ates. In both the real and the ideal executions, he receives

the output encryptions CT
ðiÞ
x00 and CT

ðiÞ
y00 . In the real world,

it is guaranteed by the semantic security of PCTD. The
views of ASg in the real and the ideal executions are

indistinguishable.
SimSg simulatesASg as follows: it randomly chooses ĥ,

uses the Encð�Þ to obtain ½ĥ�, and then sends the encryp-
tions to ADg . If ADg replies with ?, then SimSg returns ?.

The view of ASg consists of the encrypted data it
creates. In both the real and the ideal executions, he

receives the output encryption ½ĥ�. In the real world, it
is guaranteed by the semantic security of PCTD. The
views of ASg in the real and the ideal executions are

indistinguishable. tu
The security proof of SLT and SMMS protocols are similar

to that of RSM protocol under the semi-honest (non-
colluding) adversaries A ¼ ðADR

;AP ;ASi ;ASg Þ. In the fol-
lowing section, we prove the security of SEQ.

Theorem 3. The SEQ protocol described in Section 4.5 is to
securely evaluate the equivalence of plaintext over ciphertext
in the presence of semi-honest (non-colluding) adversaries
A ¼ ðADR

;AP ;ASi ;ASg Þ.
Proof. We now demonstrate how to construct three inde-

pendent simulators SimDR
;SimSP ;SimSi ;SimSg .

SimDR
receives x and y as input and simulates ADR

as
follows: it generates encryption ½x� ¼ EncðxÞ of x and
encryption ½y� ¼ EncðyÞ of y. Finally, it returns ½x� and ½y�
to ADR

and outputs ADR
’s entire view.

The view of ADR
consists of the encrypted data. The

views of ADR
in the real and the ideal executions are

indistinguishable due to the semantic security of PCTD.
SimSP simulates ASP as follows: First, it generates (fic-

titious) encryption of the inputs ½x̂� and ½ŷ� by running
Encð�Þ on randomly chosen x̂; ŷ, Then, we use the ½x̂� and
½ŷ� as the inputs of Sim

ðSLTÞ
SP
ð�; �Þ and use ½ŷ� and ½x̂� as the

inputs of Sim
ðSLTÞ
SP
ð�; �Þ, and generate ½û1� and ½û2�, respec-

tively. Then, it calculates ½1� � ½û1�N�1 and ½1� � ½û2�N�1, uses
½1� � ½û1�N�1 and ½û2� as the inputs of SimðRSMÞSP

ð�; �Þ, uses ½û1�
and ½1� � ½û2�N�1 as the inputs of Sim

ðRSMÞ
SP
ð�; �Þ, and gener-

ates ½f̂�1 � and ½f̂�2 �, respectively. Finally, it calculates

½f̂ � ¼ ½f̂�1 � � ½f̂�2 �, sends the encryption ½û1�; ½û2�; ½f̂�1 �; ½f̂�2 �; ½f̂�
toASP . IfASP replies with?, thenSimSP returns?.

SimSi and SimSg is analogous to SimSP . tu
The security proofs of SDIV, SGCD and SRF are similar to

that of the SEQ under the semi-honest (non-colluding)

adversaries A ¼ ðADR
;AP ;ASi ;ASg Þ. For the encrypted

rational number calculations, the security relies on the basic
integer calculation, which has been proven. Next, we will
illustrate our POCR is secure under an active adversary A�
defined in Section 3.3.

6.3 Security of POCR

If A� eavesdrops on the transmission between the challenge
RU and the CP, then the original encrypted data and the final
results will be obtained by A�. Moreover, ciphertext results
(obtained by executing RSM, SLT, SMMS, SEQ, SDIV, SGCD
and SRF) transmitted between CP and CSP may also be
made available to A� due to the eavesdropping. However,
these data are encrypted during transmission. Therefore, A�
will not be able to decrypt the ciphertext without knowing
the challenge RU’s private key due to the semantic security
of the PCTD. Next, suppose A� has compromised the CSPs
(or CP) to obtain the challenge RU’s partially private key.
However,A� is unable to recover the challenge RU’s private
key to decrypt the ciphertext, as the private key is randomly
split by executingKeyS algorithm of PCTD. Even more than
k CSPs are compromised,A� is unable to obtain useful infor-
mation as our protocols use the known technique of
“blinding” the plaintext [32]: given an encryption of a mes-
sage, we use the additively homomorphic property of the
PCTD cryptosystem to add a random message to it. There-
fore, original plaintext is “blinded”. In the event that A� gets
hold of private keys belonging to other RUs (i.e., not the chal-
lenge RU), A� is still unable to decrypt the challenge RU’s
ciphertext due to the unrelated property of different RU’s
private keys in our system (recall private keys in the system
are selected randomly and independently).

7 EVALUATIONS

In this section, we evaluate the performance of POCR.

7.1 Experiment Analysis

The computation cost and communication overhead of the
proposed POCR were evaluated using a custom simulator
built in Java, and the experiments were performed on a per-
sonal computer (PC) with 3.6 GHz eight-core processor and
12 GB RAMmemory.

7.1.1 Basic Crypto Primitive & Protocols’ Performance

We evaluated the performance of basic cryptographic primi-
tive and toolkits for both integer number and rational number
on our PC testbed. We denoted N as 1024 bits to achieve 80-
bit security levels [33], k ¼ 2 and n ¼ 2.We then used a smart-
phone with eight-core processor (4�Cortex-A17 + 4�Cortex-
A7) and 2 GB RAM memory to evaluate the performance of
the basic crypto primitive – see Table 2. The evaluations dem-
onstrated that the algorithms in PCTD are suitable for both

TABLE 2
The Performance of PCTD (1000-Time on Average, 80-bit Security Level, Threshold (2,2))

Algorithm Enc PDec TDec CR Dec

PC Run Time 8.235 ms 22.622 ms 0.437 ms 7.379 ms 8.221 ms
Smartphone Run Time 45.096 ms 130.233 ms 3.496 ms 45.700 ms 48.016 ms

LIU ET AL.: EFFICIENT AND PRIVACY-PRESERVING OUTSOURCED CALCULATION OF RATIONAL NUMBERS 35

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:17:18 UTC from IEEE Xplore. Restrictions apply.

PC and smartphone environments. Note that the toolkits for
both integer number and rational numbers are constructed
for outsourced computation; therefore, they were only evalu-
ated in the PC testbed—see Tables 3 and 4.

7.1.2 Factors Affecting Protocols’ Performance

For PCTD, the length of N will affect the running time of
the proposed cryptosystem. From Fig. 2a, we observe that
both the run time and the communication overhead of
the basic algorithms increase with N . This is because the
run time of the basic operations (modular multiplication
and exponential) increases as N increases, and conse-
quently, more bits need to be transmitted. For the toolkits
of integer protocols, two factors will affect the perfor-
mance, namely: i) the length of N (for all the protocols),
and ii) the domain size of the plaintext (for SBD, SDIV,
SGCD, and SRF). From Figs. 2b-2d, we observe that both
computational and communication costs of all the proto-
cols increase with N , as the protocols rely on the basic
PCTD and basic operations. From Figs. 2e-2j, we observe
that SBD, and the computational cost and the communica-
tion overhead in SDIV, SGCD, SRF increase with the
plaintext bit length. It is due to the increase in encrypted
data which consumes more computation and communica-
tion resources. From Figs. 2k-2p, we observe that the
computational cost and the communication overhead of
rational number operations increase with N , and the rea-
son is similar to that of the integer number calculations.

Optimization of computational speed. We can adopt the fol-
lowing methods to reduce the runtime of the protocols, and
consequently, improve the overall efficiency: 1) Parallel pro-
tocol executions: several protocol steps can be executed in
parallel. For example, ½z"� and ½z#� in DIV(R) can be executed
simultaneously; 2) A smaller m: SBD, SDIV, SGCD, and SRF

will benefit from fewer loops with a smaller m, which will
result in increased execution speed. However, this will lead
to a smaller plaintext domain; 3) A smaller N : all protocols
will have less runtime with a smaller N , at the cost of (a
lower level of) security. We remark that it is necessary to
choose an appropriate m and N to strike a balance between
computational overhead and plaintext domain & security
level in a real-world implementation.

7.2 Computational Analysis

7.2.1 Computational Overhead

Let us assume that one regular exponentiation operation
with an exponent of length jN j requires 1:5jNj multiplica-
tions [34] (e.g., the length of r is jNj, and compute gr

requires 1:5jN j multiplications). As exponentiation opera-
tion is significantly more costly than the addition and multi-
plication operations, we ignore the fixed numbers of
addition and multiplication operation in our analysis. For
the PCTD scheme, Enc needs 1:5jNj multiplications
to encrypt a message, Dec needs 1:5jN j multiplications to
decrypt a ciphertext PDec needs 4:5jNj multiplications
to process, TDec needs 4:5kjNj multiplications,9 and CR
needs 1:5jNjmultiplications to refresh a ciphertext.

For the basic sub-protocols, it costs 16:5jNj multiplica-
tions for CP, 9jNj multiplications for CSPi, and
ð9 kþ 10:5ÞjNj multiplications for CSPg to run RSM. To run
SLT, it costs 9jNj multiplications for CP, 4:5jNj multiplica-
tions for each CSPi, and ð4:5 kþ 6ÞjN j multiplications for
CSPg . For SMMS, it costs 16:5jN j multiplications for CP,
4:5jNj multiplications for each CSPi, and ð4:5 kþ 7:5ÞjN j
multiplications for CSPg to run. For the SBD, it costs
between 4:5mjNj multiplications (best case) and 6mjNj mul-
tiplications (worst case) for CP, takes 4:5mjNj multip-
lications for each CSPi, and takes ð4:5 kþ 6ÞmjN j
multiplications for CSPg to run. For the SEQ, it costs 51jN j

TABLE 3
The Performance of Sub-Protocols for Integer (1000-times for

Average, 80-bit Security Level, n ¼ 2)

Protocol CP compute. CSP compute. Commu.

RSM 82.688 ms 51.760 ms 1.249 KB
SBD (10-bits) 337.828 ms 306.543 ms 15.011 KB
SLT 37.560 ms 29.976 ms 0.749 KB
SEQ 266.699 ms 165.565 ms 3.994 KB
SMMS 80.827 ms 45.850 ms 2.744 KB
SDIV (10-bits) 6.211 s 4.720 s 127.590 KB
SGD (10-bits) 64.252 s 47.878 s 1.328 MB
SRF (10-bits) 156.013 s 116.107 s 1.581 MB

TABLE 4
The Performance of Secure Calculations of Rational Numbers
(1000-Time on Average Average, 80-bit Security Level, n ¼ 2)10

Protocol CP compute. CSP compute. Commu.

ADD(R) 280.757 ms 155.643 ms 3.743 KB
MIN(R) 283.764 ms 154.041 ms 3.746 KB
MUL(R) 190.336 ms 105.678 ms 2.498 KB
DIV(R) 195.329 ms 108.064 ms 2.496 KB
SMul(R) 29.937 ms N.A. N.A.

CMP(R) 216.630 ms 125.544 ms 3.246 KB
EQ(R) 495.146 ms 273.835 ms 6.494 KB

10‘ADD(R)’ stands for ‘Encrypted Rational Number Addition Operation’,
‘MIN(R)’ stands for ‘Encrypted Rational Number Minus Operation’, ‘MUL
(R)’ stands for ‘Encrypted Rational Number Multiplication Operation’. ‘DIV
(R)’ stands for ‘Encrypted Rational Number Division Operation’, ‘SMul(R)’
stands for ‘Encrypted Rational Scalar-Multiplication Operation’, ‘CMP(R)’
stands for ‘Encrypted Rational Number Comparison Operation’, ‘EQ(R)’
stands for ‘Encrypted Rational Number Equivalent Testing Operation’.

TABLE 5
Computational Analysis of Rational Numbers11

Protocol CP Cmp. CSPg Cmp. CSPi Cmp Commu.

ADD(R) 49:5jN j ð27kþ 31:5ÞjN j 27jN j 30jN j
MIN(R) 51jN j ð27kþ 31:5ÞjN j 27jN j 30jN j
MUL(R) 33jN j ð18kþ 21ÞjN j 18jN j 20jN j
DIV(R) 33jN j ð18kþ 21ÞjN j 18jN j 20jN j
SMul(R) 3jN j N.A. N.A. N.A.

CMP(R) 42jN j ð22:5kþ 27ÞjN j 22:5jNj 26jN j
EQ(R) 84jN j ð36kþ 54ÞjN j 36jN j 68jN j
11‘Cmp.’ stands for ‘Computational Cost’, and ‘Commu.’ stands for
‘Communication overhead between CSPs and CP’. The units of ‘Comp.’ and
‘Commu.’ are respectively multiplications and bits.

9. For real-world applications, k� jNj, and a1; . . . ;an can be
selected using relative small numbers. Thus, the running time of TDec
is significantly less than PDec in practice. In other words, the perfor-
mance presented in this paper is the worst-case scenario.

36 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:17:18 UTC from IEEE Xplore. Restrictions apply.

multiplications for CP, 27jNj multiplications for each CSPi

and ð18 kþ 33ÞjN j multiplications for CSPg to run. For

SDIV, it costs Oðm2jN j þ m3Þ multiplications for CP, costs

Oðm2jNjÞ multiplications for each CSPi, and extra

Oðm2kjNjÞ multiplications for CSPg to run. For SGCD, it

costs Oðm3jNj þ m4Þ multiplications for CP and Oðm3jNjÞ
multiplications for each CSPi, and extraOðm3kjNjÞmultipli-

cations for CSPg . For SRF, it costs Oðm3jNj þ m4Þmultiplica-

tions for CP and Oðm3jN jÞ multiplications for each CSPi,

and extra Oðm3kjNjÞmultiplications for CSPg .

7.2.2 Communication Overhead

In the PCTD scheme, the ciphertext ½x� and CT ð1Þ needs
2jNj bits to transmit. For the basic sub-protocols, it takes
10jN j bits to run RSM, 6jNj bits to run SLT, 14jNj bits to

run SMMS, 48jNj bits to run SEQ, 6mjN j bits to run SBD,

Oðm2jN jÞ bits to run SDIV, and Oðm3jNjÞ bits to run
SGCD, between CP and CSPs. A summary of the run time
for the encrypted rational number calculations is pre-
sented in Table 5.

8 RELATED WORK

With the increasing adoption of cloud computing services
and the revelations of the former NSA contractor, Edward
Snowden, more users are choosing to encrypt their data
prior to outsourcing to the cloud service providers. It is
important to ensure that the outsourced encrypted data can-
not be manipulated to compromise the privacy of the data
owner. Homomorphic encryption technique is a logical
solution, and can be broadly categorized into partially

Fig. 2. Evaluation findings.

LIU ET AL.: EFFICIENT AND PRIVACY-PRESERVING OUTSOURCED CALCULATION OF RATIONAL NUMBERS 37

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:17:18 UTC from IEEE Xplore. Restrictions apply.

homomorphic encryption (including additive homomor-
phic homomorphic encryption and multiplicative homo-
morphic encryption) and fully homomorphic encryption.
The former can only handle one kind of homomorphic oper-
ation with arbitrary times (e.g., additive homomorphic
encryption schemes, such as the Paillier cryptosystem [16]
and Bresson cryptosystem [20], allow other parties to per-
form some additive calculations over the ciphertext). Multi-
plicative homomorphic encryption cryptosystems (e.g.,
unpadded RSA cryptosystem [35] and ElGamal cryptosys-
tem [36]) allow some multiplication calculations over the
plaintext. Some cryptosystems attempt to provide for both
additive and multiplicative calculations, but have limited
number of fully homomorphic operations. For example,
BGN cryptosystem [37] can only support limited number of
additive homomorphic operations and only one multiplica-
tive homomorphic operation.

Gentry [38] constructs the first fully homomorphic encryp-
tion scheme based on lattice-based cryptography to support
an arbitrary number of addition and multiplication opera-
tions. Since the seminal work of Gentry, a number of fully
homomorphic cryptosystems have been proposed [39][40]
and more recently in 2015, a computation circuit for secure
computation is presented [41]. However, one of the biggest
drawbacks of fully homomorphic cryptosystems is the sys-
tem complexity. It is not yet practical to implement fully
homomorphic cryptosystem in the real-world [26]. Due to
the efficiency of partially homomorphic encryption, many
privacy-preserving protocols have been constructed, such as
the secure comparison protocols [42], secure scalar product
protocols [43], secure set intersection protocols [44], secure
vector comparison protocol [45], and secure TOP-K protocols
[25], [46]. These protocols had been applied in a number of
real-world scenarios. For example, Liu et al. [46] use a secure
TOP-Kprotocol to calculate the top-k disease name according
to the patient’s symptoms in a privacy-preserving manner.
Although homomorphic encryption can be used to design
secure protocols, tradition schemes can only process integer
numbers and cannot securely perform division operation.
This is the gap that this paper contributed to.

9 CONCLUSION

In this paper, we proposed a new efficient and privacy-pre-
serving outsourced calculation framework for rational num-
bers, which allows a user to outsource the rational numbers
to a cloud service provider for storing and processing. We
then built toolkits to perform privacy preserving calcula-
tions to handle most commonly used integer operations,
and to process outsourced rational numbers in a privacy-
preserving way. The utility of our framework (and the
underlying building blocks) was demonstrated using simu-
lations. Future research will include deploying the pro-
posed framework in a real-world setting, in collaboration
with a case study organization such as a hospital, to handle
more complex real-world computations.

ACKNOWLEDGMENTS

Thisworkwas supported by SingaporeMinistry of Education
Academic Research Fund Tier 1 under the research grant 14-
C220-SMU-006. It is also supported in part by the National

Natural Science Foundation of China under grant No.
61402109,No. 61502400,No. 61370078 andNo. 61502248.

REFERENCES

[1] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, chal-
lenges, techniques and technologies: A survey on big data,” Inf.
Sci., vol. 275, pp. 314–317, 2014.

[2] D. Quick and K.-K. R. Choo, “Impacts of increasing volume of dig-
ital forensic data: A survey and future research challenges,” Digi-
tal Investigation, vol. 11, no. 4, pp. 273–294, 2014.

[3] IDC and EMC. (2012). The digital universe in 2020: Big data, big-
ger digital shadows, and biggest growth in the far east [Online].
Available: http://www.emc.com/leadership/digital-universe/
iview/executive-summary-a-universe-of.htm

[4] M. A. Beyer and D. Laney, The Importance of Big Data: A Definition.
Stamford, CT, USA: Gartner, 2012.

[5] B. Chamberlin. (2014). Iot (internet of things) will go nowherewith-
out cloud computing and big data analytics. [Online]. Available:
http://ibmcai.com/2014/11/20/iot-internet-of-things-will-go-
nowhere-without-cloud-computing-and-big-data-analytics/

[6] H. Wang. (2011). Cloud computing in ecommerce [Online]. Avail-
able: http://www.comp.leeds.ac.uk/mscproj/reports/1011/
wang.pdf

[7] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali,
“Cloud computing: Distributed internet computing for IT and sci-
entific research,” IEEE Internet Comput., vol. 13, no. 5, pp. 10–13,
Sep./Oct. 2009.

[8] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and
W. Karl, “Scientific cloud computing: Early definition and experi-
ence,” in Proc. 10th IEEE Int. Conf. High Perform. Comput. Commun.,
2008, pp. 825–830.

[9] D. Quick, B. Martini, and K.-K. R. Choo, Cloud Storage Forensics.
Amsterdam, The Netherlands: Elsevier, 2013.

[10] V. Kundra. (2011). Federal cloud computing strategy [Online].
Available: http://www.whitehouse.gov/sites/default/files/
omb/assets/egov_docs/federal-cloud-computing-strategy.pdf

[11] P.M. Figliola and E. A. Fischer. (2015). Overview and issues for imp-
lementation of the federal cloud computing initiative: Implications
for federal information technology reform management [Online].
Available: https://www.fas.org/sgp/crs/misc/R42887.pdf

[12] D. A. Powner, Cloud Computing: Additional Opportunities and Sav-
ings Need to be Pursued. United States Government Accountability
Office, (2014) [Online]. Available: http://www.gao.gov/assets/
670/666133.pdf

[13] The cloud computing and distributed systems (clouds) laboratory,
university of melbourne (2016) [Online]. Available: http://www.
cloudbus.org/

[14] Mobile & cloud computing laboratory (mobile & cloud lab) (2016)
[Online]. Available: http://mc.cs.ut.ee/

[15] A. Hidaka, S. Sasazuki, A. Goto, N. Sawada, T. Shimazu,
T. Yamaji, M. Iwasaki, M. Inoue, M. Noda, H. Tajiri, and S. Tsu-
gane, “Plasma insulin, c-peptide and blood glucose and the risk of
gastric cancer: The Japan public health center-based prospective
study,” Int. J. Cancer, vol. 136, no. 6, pp. 1402–1410, 2015.

[16] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. Int. Conf. Theory Appl. Cryptographic
Techn. Adv. Cryptology, 1999, pp. 223–238.

[17] J. Benaloh, “Dense probabilistic encryption,” in Proc. Workshop
Selected Areas Cryptography, 1994, pp. 120–128.

[18] B. K. Samanthula, C. Hu, and W. Jiang, “An efficient and probabi-
listic secure bit-decomposition,” in Proc. 8th ACM Symp. Inf., Com-
put. Commun. Security, 2013, pp. 541–546.

[19] Q. Do, B. Martini, and K.-K. R. Choo, “A forensically sound adver-
sary model for mobile devices,” PLoS One, vol. 10, no. 9,
p. e0138449, 2015.

[20] E. Bresson, D. Catalano, and D. Pointcheval, “A simple public-key
cryptosystem with a double trapdoor decryption mechanism and
its applications,” in Proc. 9th Int. Conf. Theory Appl. Cryptology Inf.
Security Adv. Cryptology, 2003, pp. 37–54.

[21] P.-A. Fouque, G. Poupard, and J. Stern, “Sharing decryption in the
context of voting or lotteries,” in Proc. Financial Cryptography,
2000, pp. 90–104.

[22] P. Fouque and D. Pointcheval, “Threshold cryptosystems secure
against chosen-ciphertext attacks,” in Proc. 7th Int. Conf. Theory
Appl. Cryptology Inf. Security, Gold Coast Adv. Cryptology, 2001,
pp. 351–368.

38 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:17:18 UTC from IEEE Xplore. Restrictions apply.

http://www.emc.com/leadership/digital-universe/iview/executive-summary-a-universe-of.htm
http://www.emc.com/leadership/digital-universe/iview/executive-summary-a-universe-of.htm
http://ibmcai.com/2014/11/20/iot-internet-of-things-will-go-nowhere-without-cloud-computing-and-big-data-analytics/
http://ibmcai.com/2014/11/20/iot-internet-of-things-will-go-nowhere-without-cloud-computing-and-big-data-analytics/
http://www.comp.leeds.ac.uk/mscproj/reports/1011/wang.pdf
http://www.comp.leeds.ac.uk/mscproj/reports/1011/wang.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/federal-cloud-computing-strategy.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/federal-cloud-computing-strategy.pdf
https://www.fas.org/sgp/crs/misc/R42887.pdf
http://www.gao.gov/assets/670/666133.pdf
http://www.gao.gov/assets/670/666133.pdf
http://www.cloudbus.org/
http://www.cloudbus.org/
http://mc.cs.ut.ee/

[23] R. Cramer and V. Shoup, “Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption,” in
Proc. Int. Conf. Theory Appl. Cryptology Inf. Security Adv. Cryptology,
2002, pp. 45–64.

[24] C. Ding, Chinese Remainder Theorem. Singapore: World Scientific,
1996.

[25] B. K. Samanthula, Y. Elmehdwi, andW. Jiang, “k-nearest neighbor
classification over semantically secure encrypted relational data,”
IEEE Trans. Knowl. Data Eng., vol. 27, no. 5, pp. 1261–1273,
May 2015.

[26] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption
with relatively small key and ciphertext sizes,” in Proc. Public Key
Cryptography, 2010, pp. 420–443.

[27] L. Morris, (2013). Analysis of partially and fully homomorphic
encryption [Online]. Available: http://www.liammorris.com/
crypto2/Homomorphic%20Encryption%20Paper.pdf

[28] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[29] A. Beimel, “Secret-sharing schemes: A survey,” in Proc. 3rd Int.
Workshop Coding Cryptology, 2011, pp. 11–46.

[30] S. Kamara, P. Mohassel, and M. Raykova. (2011). Outsourcing
multi-party computation. IACR Cryptology ePrint Archive [Online].
2011, p. 272. Available: http://eprint.iacr.org/2011/272

[31] X. Liu, B. Qin, R. H. Deng, and Y. Li, “An efficient privacy-
preserving outsourced computation over public data,” IEEE Trans.
Service Comput., (2015) [Online]. Available: http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?reload=true&arnumber=7362220,
Doi: 10.1109/TSC.2015.2511008.

[32] A. Peter, E. Tews, and S. Katzenbeisser, “Efficiently outsourcing
multiparty computation under multiple keys,” IEEE Trans. Inf.
Forensics Security, vol. 8, no. 12, pp. 2046–2058, Dec. 2013.

[33] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “NIST spe-
cial publication 800-57,” NIST Special Publication, vol. 800, no. 57,
pp. 1–142, 2007.

[34] D. E. Knuth, The Art of Computer Programming: Seminumerical algo-
rithm (arithmetic), vol. 2. Reading,MA, USA:Addison-Wesley, 1981.

[35] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[36] T. E. Gamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE Trans. Inf. Theory, vol. IT-31,
no. 4, pp. 469–472, Jul. 1985.

[37] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-dnf formulas on
ciphertexts,” in Proc. 2nd Int. Conf. Theory Cryptography, 2005,
pp. 325–341.

[38] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proc. 41st Annu. ACM Symp. Theory Comput., 2009, pp. 169–178.

[39] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based,” in Proc. 33rd Annu. Cryptology Conf. Adv.
Cryptology, 2013, pp. 75–92.

[40] J. Coron, T. Lepoint, and M. Tibouchi, “Scale-invariant fully
homomorphic encryption over the integers,” in Proc. 17th Int.
Conf. Practice Theory Public-Key Cryptography, 2014, pp. 311–328.

[41] J. H. Cheon, M. Kim, and M. Kim, “Search-and-compute on
encrypted data,” in Proc. Int. Workshops Financial Cryptography
Data Security, 2015, pp. 142–159.

[42] H. Lin and W. Tzeng, “An efficient solution to the millionaires’
problem based on homomorphic encryption,” in Proc. 3rd Int.
Conf. Appl. Cryptography Netw. Security, 2005, pp. 456–466.

[43] R. Lu, H. Zhu, X. Liu, J. K. Liu, and J. Shao, “Toward efficient
and privacy-preserving computing in big data era,” IEEE Netw.,
vol. 28, no. 4, pp. 46–50, Jul./Aug. 2014.

[44] F. Kerschbaum, “Outsourced private set intersection using homo-
morphic encryption,” in Proc. 7th ACM Symp. Inf., Comput. Com-
mun. Security, 2012, pp. 85–86.

[45] X. Liu, R. Lu, J. Ma, L. Chen, and H. Bao, “Efficient and privacy-
preserving skyline computation framework across domains,” Proc.
Future Generation Comput. Syst., (2015) [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0167739X15003180.
Doi: 10.1016/j.future.2015.10.005.

[46] X. Liu, R. Lu, J. Ma, L. Chen, and B. Qin, “Privacy-preserving
patient-centric clinical decision support system on naive Bayesian
classification,” IEEE J. Biomed. Health Informat., vol. 20, no. 2,
pp. 655–668, Mar. 2016.

Ximeng Liu received the BSc degree in elec-
tronic engineering from Xidian University, Xi’an,
China, in 2010, and the PhD degrees in cryptog-
raphy from Xidian University, China, in 2015. He
was a research assistant at the School of Electri-
cal and Electronic Engineering, Nanyang Tech-
nological University, Singapore from 2013 to
2014. He is currently a research fellow at the
School of Information System, Singapore Man-
agement University, Singapore. His research
interests include cloud security, applied
cryptography, and big data security. He is a mem-
ber of the IEEE.

Kim-Kwang Raymond Choo received the PhD
degree in information security from Queensland
University of Technology, Brisbane, QLD,
Australia, in 2006. He is currently an associate
professor at the University of South Australia. He
was named one of 10 Emerging Leaders in the
Innovation category of The Weekend Australian
Magazine/Microsoft’s Next 100 series in 2009,
and received various awards including ESORICS
2015 Best Research Paper Award, Highly Com-
mended Award by Australia New Zealand Policing

Advisory Agency in 2014, 2010 ACT Pearcey Award, Fulbright Scholar-
ship in 2009, 2008 Australia Day Achievement Medallion, and the British
Computer Society’sWilkes Award. He is a senior member of the IEEE.

Robert H. Deng has been a professor at the
School of Information Systems, Singapore Man-
agement University since 2004. His research
interests include data security and privacy, multi-
media security, network and system security. He
was an associate editor of the IEEE Transactions
on Information Forensics and Security from 2009
to 2012. He is currently an associate editor of the
IEEE Transactions on Dependable and Secure
Computing, an associate editor of Security and
Communication Networks (John Wiley). He is the

cochair of the Steering Committee of the ACM Symposium on Informa-
tion, Computer and Communications Security. He is a fellow of the IEEE.

Rongxing Lu received the PhD degree in com-
puter science from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2006 and the PhD
degree (awarded Canada Governor General
Gold Medal) in electrical and computer engineer-
ing from the University of Waterloo, Waterloo,
Ontario, Canada, in 2012. Since May 2013, he
has been with the School of Electrical and Elec-
tronic Engineering, Nanyang Technological Uni-
versity, Singapore, as an assistant professor. His
research interests include computer, network and

communication security, applied cryptography. He is a senior member of
the IEEE.

Jian Weng received the BS and MS degrees in
computer science and engineering from the
South China University of Technology,
Guangzhou, China, in 2004 and 2000, respec-
tively, and the PhD degree in computer science
and engineering from Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2008. From April
2008 to March 2010, he was a postdoc in the
School of Information Systems, Singapore Man-
agement University. He is currently a professor
and vice dean with the School of Information

Technology, Jinan University. He served as a PC co-chairs or PC mem-
ber for more than 20 international conferences.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LIU ET AL.: EFFICIENT AND PRIVACY-PRESERVING OUTSOURCED CALCULATION OF RATIONAL NUMBERS 39

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:17:18 UTC from IEEE Xplore. Restrictions apply.

http://www.liammorris.com/crypto2/Homomorphic%20Encryption%20Paper.pdf
http://www.liammorris.com/crypto2/Homomorphic%20Encryption%20Paper.pdf
http://www.liammorris.com/crypto2/Homomorphic%20Encryption%20Paper.pdf
http://www.liammorris.com/crypto2/Homomorphic%20Encryption%20Paper.pdf
http://eprint.iacr.org/2011/272
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7362220, Doi:�10.1109/TSC.2015.2511008
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7362220, Doi:�10.1109/TSC.2015.2511008
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7362220, Doi:�10.1109/TSC.2015.2511008
http://www.sciencedirect.com/science/article/pii/S0167739X15003180. Doi: 10.1016/j.future.2015.10.005
http://www.sciencedirect.com/science/article/pii/S0167739X15003180. Doi: 10.1016/j.future.2015.10.005
http://www.sciencedirect.com/science/article/pii/S0167739X15003180. Doi: 10.1016/j.future.2015.10.005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

